Learning an Outlier-Robust Kalman Filter

نویسندگان

  • Jo-Anne Ting
  • Evangelos Theodorou
  • Stefan Schaal
چکیده

We introduce a modified Kalman filter that performs robust, real-time outlier detection, without the need for manual parameter tuning by the user. Systems that rely on high quality sensory data (for instance, robotic systems) can be sensitive to data containing outliers. The standard Kalman filter is not robust to outliers, and other variations of the Kalman filter have been proposed to overcome this issue. However, these methods may require manual parameter tuning, use of heuristics or complicated parameter estimation procedures. Our Kalman filter uses a weighted least squares-like approach by introducing weights for each data sample. A data sample with a smaller weight has a weaker contribution when estimating the current time step’s state. Using an incremental variational Expectation-Maximization framework, we learn the weights and system dynamics. We evaluate our Kalman filter algorithm on data from a robotic dog.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers

Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...

متن کامل

Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers

Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...

متن کامل

Outlier-Tolerant Kalman Filter of State Vectors in Linear Stochastic System

The Kalman filter is widely used in many different fields. Many practical applications and theoretical results show that the Kalman filter is very sensitive to outliers in a measurement process. In this paper some reasons why the Kalman Filter is sensitive to outliers are analyzed and a series of outlier-tolerant algorithms are designed to be used as substitutes of the Kalman Filter. These outl...

متن کامل

Robust State Estimation with Redundant Proprioceptive Sensors

We present a framework for robust estimation of the configuration of an articulated robot using a large number of redundant proprioceptive sensors (encoders, gyros, accelerometers) distributed throughout the robot. Our method uses an Unscented Kalman Filter (UKF) to fuse the robot’s sensor measurements. The filter estimates the angle of each joint of the robot, enabling the accurate estimation ...

متن کامل

A New Edge-Grouping Algorithm for Multiple Complex Objects Localization

We present a new algorithm that provides an efficient localization method of elliptic industrial objects. Our proposed feature extraction inherits edge grouping approaches. But instead of utilizing edge linkage to restore incomplete contours, we introduce criteria of feature's parameters and optimize the criteria using an extended Kalman filter. Through a new parameter estimation under a proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007